Close Tue: 10.3
Close Thu: 14.1, 14.3 (part 1)
Exam 1 will be returned Tuesday.
No office hours today (grading day).
Today: Finish 13.4 and start 10.3

Finishing 13.4 Acceleration/Velocity

Entry Task: A ball with mass $m=0.8 \mathrm{~kg}$ is thrown northward into the air with initial speed of $30 \mathrm{~m} / \mathrm{sec}$ at an angle of 30 degrees with the ground. A west wind applies a steady force of 4 N on the ball (west to east).

If you are standing on level ground, where does the ball land?

Measuring and describing acceleration

Recall: $\operatorname{comp}_{\boldsymbol{b}}(\boldsymbol{a})=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{b}|}=$ length.
We define the tangential and normal components of acceleration by: $a_{T}=\operatorname{comp}_{\boldsymbol{T}}(\boldsymbol{a})=\boldsymbol{a} \cdot \boldsymbol{T}=$ tangential $a_{N}=\operatorname{comp}_{\boldsymbol{N}}(\boldsymbol{a})=\boldsymbol{a} \cdot \boldsymbol{N}=$ normal

For computing use,

$$
a_{T}=\frac{\stackrel{\rightharpoonup}{\boldsymbol{r}}^{\prime} \cdot \overrightarrow{\boldsymbol{r}}^{\prime \prime}}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|} \text { and } a_{T}=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|}
$$

For interpreting use,
$a_{T}=v^{\prime}=\frac{d}{d t}\left|r^{\prime}(t)\right|=$ "deriv. of speed"
$a_{N}=k v^{2}=$ curvature $\cdot(\text { speed })^{2}$

Example:

$$
\overrightarrow{\boldsymbol{r}}(t)=<\cos (t), \sin (t), t\rangle
$$

Find the tangential and normal components of acceleration.

Deriving interpretations:
Note that: $\boldsymbol{a}=a_{T} \boldsymbol{T}+a_{N} \boldsymbol{N}$
Let $v(t)=|\overrightarrow{\boldsymbol{v}}(t)|=$ speed.

1. $\overrightarrow{\boldsymbol{T}}(t)=\frac{\overrightarrow{\vec{r}}^{\prime}(t)}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\frac{\overrightarrow{\boldsymbol{v}}(t)}{v(t)}$ implies $\overrightarrow{\boldsymbol{v}}=v \overrightarrow{\boldsymbol{T}}$.
2. $\kappa(t)=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}\right|}{v(t)}$ implies $\left|\overrightarrow{\boldsymbol{T}}^{\prime}\right|=\kappa v$.
3. $\stackrel{\rightharpoonup}{\boldsymbol{N}}(t)=\frac{\overline{\boldsymbol{T}}^{\prime}(t)}{\left|\overline{\boldsymbol{T}}^{\prime}(t)\right|}=\frac{\overline{\boldsymbol{T}}^{\prime}}{\kappa v}$ implies $\overrightarrow{\boldsymbol{T}}^{\prime}=\kappa v \overrightarrow{\boldsymbol{N}}$.

Differentiating the first fact above gives

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{v}}^{\prime}=v^{\prime} \overrightarrow{\boldsymbol{T}}+v \overrightarrow{\boldsymbol{T}}^{\prime}, \text { so } \\
& \overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{v}}^{\prime}=v^{\prime} \overrightarrow{\boldsymbol{T}}+k v^{2} \overrightarrow{\boldsymbol{N}} .
\end{aligned}
$$

Conclusion:
$a_{T}=v^{\prime}=\frac{d}{d t}\left|r^{\prime}(t)\right|=$ "deriv. of speed"
$a_{N}=k v^{2}=$ curvature $\cdot(\text { speed })^{2}$
10.3 Polar Coordinates

Goal: A 2D coordinate system good for circular/arcing paths.

Cartesian	Polar
Given (x, y) 1. Stand at origin.	Given (r, θ) 1. Stand at origin facing the positive x-axis.
2. Move x-units on x-axis. pos. $=$ right, neg. $=$ left	2.Rotate by θ. pos. $=$ ccw, neg. $=$ clockwise
3. Move y-units parallel to y-axis. pos. $=$ up neg. $=$ down	3.Walk r-units in direction you are facing.
pos. = forward	
neg. = backward	

Example: Plot these polar points

1. $(r, \theta)=(1, \pi / 2)$
2. $(r, \theta)=(3,5 \pi / 4)$
3. $(r, \theta)=(0, \pi / 3)$
4. $(r, \theta)=(-1,3 \pi / 2)$
5. $(r, \theta)=(4,0)$
6. $(r, \theta)=(4,100 \pi)$

From trig we already know:

$$
\begin{array}{ll}
x=r \cos (\theta), & y=r \sin (\theta) \\
\tan (\theta)=\frac{y}{x}, & x^{2}+y^{2}=r^{2}
\end{array}
$$

Exercise:

1. Describe all pts where $r=3$.
2. Describe all pts where $\theta=\pi / 4$.

Plotting Polar Curves

Option 1: Try to convert to x and y. Then hope you recognize the curve.

Option 2: Plot points!

Start with $0, \pi / 2, \pi, 3 \pi / 2$ (intercepts).
For more detail do multiples of $\pi / 6$ and $\pi / 4$.

Example: Graph $r=\sin (\theta)$

$\boldsymbol{\theta}$	0	$\pi / 2$	π	$3 \pi / 2$	2π
\mathbf{r}					

$\boldsymbol{\theta}$	$\pi / 6$	$\pi / 4$	$\pi / 3$	$2 \pi / 3$	$3 \pi / 4$	$5 \pi / 6$
\mathbf{r}						

Example: Graph $r=\cos (2 \theta)$

An old exam question: The four polar equations below each match up with one of the six pictures. Identify which match.

1. $r=\sqrt{\theta}$
2. $r=1-2 \cos (\theta)$
3. $r=1+\sin (2 \theta)$
4. $r=9 \cos (\theta)$

-

