Close Tue: 10.3 Close Thu: 14.1, 14.3 (part 1) Exam 1 will be returned Tuesday. No office hours today (grading day). Today: Finish 13.4 and start 10.3

Finishing 13.4 Acceleration/Velocity

Entry Task: A ball with mass m = 0.8 kg is thrown northward into the air with initial speed of 30 m/sec at an angle of 30 degrees with the ground. A west wind applies a steady force of 4 N on the ball (west to east).

If you are standing on level ground, where does the ball land?

Measuring and describing acceleration

$$a_T = \frac{\vec{r}' \cdot \vec{r}''}{|\vec{r}'|}$$
 and $a_T = \frac{|\vec{r}' \times \vec{r}''|}{|\vec{r}'|}$

For interpreting use,

$$a_T = \nu' = \frac{d}{dt} |r'(t)| =$$
 "deriv. of speed"
 $a_N = k\nu^2 = \text{curvature} \cdot (\text{speed})^2$

Recall: comp_b(a) = $\frac{a \cdot b}{|b|}$ = length.

We define the tangential and normal components of acceleration by: $a_T = \operatorname{comp}_T(a) = a \cdot T$ = tangential $a_N = \operatorname{comp}_N(a) = a \cdot N$ = normal Example:

 $\vec{r}(t) = <\cos(t)$, $\sin(t)$, t >Find the tangential and normal

components of acceleration.

Deriving interpretations: Note that: $\boldsymbol{a} = a_T \boldsymbol{T} + a_N \boldsymbol{N}$

Let
$$v(t) = |\vec{v}(t)| = \text{speed}.$$

 $1.\vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} = \frac{\vec{v}(t)}{v(t)} \text{ implies } \vec{v} = v\vec{T}.$
 $2.\kappa(t) = \frac{|\vec{T}'(t)|}{|\vec{r}'(t)|} = \frac{|\vec{T}'|}{v(t)} \text{ implies } |\vec{T}'| = \kappa v.$
 $3.\vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|} = \frac{\vec{T}'}{\kappa v} \text{ implies } \vec{T}' = \kappa v \vec{N}.$

Differentiating the first fact above gives

$$\vec{a} = \vec{v}' = \nu' \vec{T} + \nu \vec{T}'$$
, so
 $\vec{a} = \vec{v}' = \nu' \vec{T} + k \nu^2 \vec{N}$.

Conclusion:

$$a_T = \nu' = \frac{d}{dt} |r'(t)| =$$
 "deriv. of speed"
 $a_N = k\nu^2 = \text{curvature} \cdot (\text{speed})^2$

10.3 Polar Coordinates

Goal: A 2D coordinate system good for circular/arcing paths.

Cartesian	Polar
Given (x, y)	Given (r <i>,</i> θ)
1. Stand at origin.	1. Stand at origin facing
	the positive <i>x</i> -axis.
2. Move x-units on x-axis.	2.Rotate by θ.
pos. = right <i>,</i>	pos. = ccw,
neg. = left	neg. = clockwise
3. Move y-units parallel	3.Walk <i>r</i> -units in direction
to y-axis.	you are facing.
pos. = up	pos. = forward
neg. = down	neg. = backward

Example: Plot these polar points 1. $(r, \theta) = (1, \pi/2)$ 2. $(r, \theta) = (3, 5\pi/4)$ 3. $(r, \theta) = (0, \pi/3)$ 4. $(r, \theta) = (-1, 3\pi/2)$ 5. $(r, \theta) = (4, 0)$ 6. $(r, \theta) = (4, 100 \pi)$

From trig we already know:

$$x = r \cos(\theta),$$
 $y = r \sin(\theta)$
 $\tan(\theta) = \frac{y}{x},$ $x^2 + y^2 = r^2$

Exercise:

1. Describe all pts where r = 3.

2. Describe all pts where $\theta = \pi/4$.

Plotting Polar Curves

Option 1: Try to convert to x and y. Then hope you recognize the curve.

Option 2: Plot points!

Start with 0, $\pi/2$, π , $3\pi/2$ (intercepts). For more detail do multiples of $\pi/6$ and $\pi/4$. *Example*: Graph $r = sin(\theta)$

e)	0	π/2	π	3π/2	2π
r	•					

θ	π/6	π/4	π/3	2π/3	3π/4	5π/6
r						

Example: Graph $r = cos(2\theta)$

θ	0	π/2	π	3π/2	2π
r					

(θ	π/6	π/4	π/3	2π/3	3π/4	5π/6
	r						

An old exam question:

The four polar equations below each match up with one of the six pictures. Identify which match.

1.
$$r = \sqrt{\theta}$$

2.
$$r = 1 - 2\cos(\theta)$$

- 3. $r = 1 + \sin(2\theta)$
- 4. $r = 9\cos(\theta)$

